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A ground set of n elements and a class of its subsets, also known as fea-
sible solutions, is given.  Moreover, each element in the ground set is 
associated a positive weight. In the setting of the original combinatorial 
optimization problem, each feasible solution corresponds to an objective 
value, often measured under the sum or the max of all element weights 
in the underlying solution. This paper is to address the problem of mod-
ifying the weight of elements in the ground set such that a prespecified 
subset becomes the 𝑘  maximizer with respect to new weights and the 
cost is minimized. This problem is called the inverse version of the 𝑘  
maximization combinatorial optimization. Two quadratic algorithms 
were developed to solve this problem with sum objective function under 
Chebyshev norm and the bottleneck Hamming distance. Additionally, if 
the objective function is the max function then this problem can be solved 
in 𝑂 𝑛 𝑙𝑜𝑔 𝑛  time. 
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1 INTRODUCTION 

In a combinatorial optimization problem, one often 
supposes that the parameters such as costs, 
capacities, profits, etc. are already known and aims 
to find an optimal solution. However, in many real-
life situations, the estimation or approximation for 
the parameters are known and it is difficult to find 
the exact optimizer. The fundamental idea of inverse 
(combinatorial) optimization problem (Heuberger, 
2004) is to change the parameters of the 
corresponding original problem such that a 
predetermined solution becomes optimal with 

respect to new parameters and the cost function is 
minimized. 

The inverse optimization problem was first 
investigated by Burton et al. (1992). They studied 
the inverse shortest path problem arising in seismic 
tomography and gave an application to forecast the 
movement of earthquakes. Since then, lots of useful 
applications in the reality of the inverse 
optimization problem have been proposed by many 
researchers. In 1995, the relation between the 
inverse shortest path and minimal cutset problem 
was proved by Xu et al. (1995). Then, Zhang et al. 
(1996) recommended strongly polynomial time 
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algorithms to solve the inverse version of 
assignment and minimum cost flow problems. Two 
years later, Zhang et al. (1998) demonstrated that 
the inverse problem of minimum cuts can be 
transformed in a direct way into a minimum cost 
circulation problem, and therefore, can be solved 
successfully by strongly polynomial algorithms. In 
the same year, Hu et al. (1998) also designed an 
𝑂 𝑛  algorithm to solve the inverse shortest path 
arborescence problem under 𝑙  norm. Recently, 
Nguyen et al. (2015) explored the inverse convex 
ordered 1-median problem on trees with the cost 
function considered under Chebyshev norm and the 
bottleneck Hamming distance. They established an 
𝑂 𝑛 log 𝑛  time algorithm to solve this problem.  

In many practical situations, the kth maximizer of a 
problem is focused. For example, as the price of 
transportations, services and travel agencies in the 
first classes are expensive or unreasonable, one had 
better to choose the ones in choosing the kth-class. 
Therefore, it is necessary to justify parameters of a 
model so that the desired solution becomes the kth 
best one. In this paper, the inverse kth maximization 
problem under Chebyshev norm and bottleneck 
Hamming distance are studied. According to the 
best of our knowledge, the problem has not been 
under investigation so far. The objective function of 
the original problem is considered in two forms, 
viz., sum and max. For the sum function, the 
problem can be solved in quadratic time. 
Concerning the max function, an 𝑂 𝑛 log 𝑛  
algorithm is developed to solve the corresponding 
inverse problem. 

This paper is organized as follows. Section 2 briefly 
recalls the combinatorial optimization and its 
inverse version. Two quadratic algorithms that solve 
the inverse 𝑘  maximization problem are 
developed in Section 3. Finally, in Section 4, inverse 
𝑘  maximization optimization problem with max 
function is coined. It shows that the problem is 
solvable in 𝑂 𝑛 log 𝑛  time. 

2 PROBLEM DEFINITION 

Given a ground set 𝐺 ≔ 𝑒 ; 𝑒 ; … ; 𝑒  and let 𝐹 be 
a class of subsets of 𝐺, i.e., 𝐹 ≔ 𝐸 ; 𝐸 ; … ; 𝐸 , 
where 𝐸 ⊂ 𝐺, for 𝑖 1, … , 𝑝. The set 𝐹 is often 
considered as the set of all feasible solutions for a 
corresponding combinatorial optimization problem 
on 𝐺. Moreover, each element 𝑒  is associated with 
a non-negative weight, say 𝑤 𝑒 , for 𝑗 1, … , 𝑛. 
The weight of 𝐸 can be either measured by the sum 
of all elements in 𝐸, i.e., 

𝑤 𝐸 ≔ 𝑤 𝑒
∈

, 

or by the max of its members, i.e.,  

𝑤 𝐸 ≔ max ∈ 𝑤 𝑒 . 

A solution 𝐸 ∈ 𝐹 is the 𝑘  maximizer of the 
combinatorial optimization problem with respect to 
sum (max) function on 𝐹 iff 𝑤 𝐸

𝑤 𝐸  𝑤 𝐸 𝑤 𝐸  in the sorting 

𝑤 𝐸 𝑤 𝐸 𝑤 𝐸 ⋯ 𝑤 𝐸
⋯ 𝑤 𝐸  

or  
𝑤 𝐸 𝑤 𝐸 𝑤 𝐸 ⋯

𝑤 𝐸 ⋯ 𝑤 𝐸 . 

Here, .  is a permutation on the set of 1,2, … , 𝑝 . 

Example 2.1 

Given a network in Fig. 1., the solution sets 𝐹
𝐸 ; 𝐸 ; 𝐸 ; 𝐸 ; 𝐸 ; 𝐸  can be considered as the set 

of all paths connecting two leaves of the tree. Then 
the subsets in 𝐹  is represented as follows: 

𝐸 𝑒 ; 𝑒 ; 𝑒 , 𝐸 𝑒 ; 𝑒 ; 𝑒 , 𝐸
𝑒 ; 𝑒 ; 𝑒 , 𝐸
𝑒 ; 𝑒 ; 𝑒 , 𝐸 𝑒 ; 𝑒 , 𝐸
𝑒 ; 𝑒 . 

𝑤 𝐸 11; 𝑤 𝐸 12; 𝑤 𝐸
13; 𝑤 𝐸 14; 𝑤 𝐸 5; 𝑤 𝐸 10. 

𝑤 𝐸 5; 𝑤 𝐸 5; 𝑤 𝐸
6; 𝑤 𝐸 6; 𝑤 𝐸 3; 𝑤 𝐸 6. 

Choose 𝑘 4, then 𝐸  is the 4  maximizer with 
respect to sum function. Correspondingly, 𝐸  (or 
𝐸 , 𝐸 ) is the 4  maximizer with respect to max 
function. 

 

Fig. 1: An instance of a network 

Given a set of feasible solutions 𝐹, a weight function 
𝑤 .  and a prespecified set 𝐸∗ ∈ 𝐹. The weight of 
each element is modified by augmenting or 
reducing, i.e., 𝑤 𝑒 𝑤 𝑒 𝑝 𝑒 𝑞 𝑒 . The 
inverse 𝑘  maximization is stated as follows: 
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𝐸∗ become the 𝑘  maximization (corresponding 
sum or max function) with respect to new weights 
𝑤. 

Cost function 𝑓 𝑝, 𝑞  is minimized. 

Variables are in certain bounds, i.e., 0 𝑝 𝑒
�̅� 𝑒  and 0 𝑞 𝑒 𝑞 𝑒  for 𝑒 ∈ 𝐺. 

3 PROBLEM WITH SUM FUNCTION 

3.1 Under Chebyshev norm 

The cost function can be written as 𝑓 𝑝, 𝑞
max 𝑐 𝑒 𝑝 𝑒 , 𝑐 𝑒 𝑞 𝑒 , where 𝑐 𝑒 𝑐 𝑒  
is the cost to increase (decrease) one unit weight of 
an edge 𝑒 ∈ 𝐺. Assume that 𝑤 𝐸∗ 𝑤 𝐸 , 
then 𝐸∗ is not a 𝑘 -max of the problem. 

Proposition 3.1 In the optimal solution of the 
inverse 𝑘  max optimization problem, one 
increases the weights of elements in 𝐸∗ and reduces 
the weights of elements in 𝐺\𝐸∗. 

By this proposition, we set 𝑞 𝑒 0, ∀𝑒 ∈ 𝐸∗, and 
𝑝 𝑒 0, ∀𝑒 ∈ 𝐺\𝐸∗. Hence, we set 

𝑥 𝑒
𝑝 𝑒 , if 𝑒 ∈ 𝐸∗     

𝑞 𝑒 ,   if 𝑒 ∈ 𝐺\𝐸∗    and   �̅� 𝑒

�̅� 𝑒 ,   if 𝑒 ∈ 𝐸∗      
𝑞 𝑒 ,   if 𝑒 ∈ 𝐺\𝐸∗.

 

     The weight of 𝑒 ∈ 𝐸∗ 𝑒 ∈ 𝐺\𝐸∗  is said to be 
modified by an amount 𝑥 𝑒  if it is augmented 
(reduced) by 𝑥 𝑒 . The cost is consequently written 
as 

𝑓 𝑝, 𝑞 max
∈

𝑐 𝑒 𝑥 𝑒 . 

Here, 𝑐 𝑒 ≔ 𝑐 𝑒  if 𝑒 ∈ 𝐸∗ and 𝑐 𝑒 ≔ 𝑐 𝑒  
otherwise. 

The following denotation is further introduced: 

Δ 𝐸, 𝐸 𝐸\𝐸 ∪ 𝐸 \𝐸 ; 𝛿 𝐸, 𝐸
𝑤 𝐸 𝑤 𝐸 . 

Proposition 3.2 In the optimal solution of the 
problem, there exists at least one solution set 𝐸 ∈
𝐹, 𝑤 𝐸 𝑤 𝐸∗ , such that 𝑤 𝐸 𝑤 𝐸∗ . 

Proof. For 𝐸 ∈ 𝐹, 𝑤 𝐸 𝑤 𝐸∗ . Let us 
consider 𝑤 𝐸 𝑤 𝐸∗ ∑ 𝑤 𝑒∈ ∩ ∗

𝑥 𝑒 ∑ 𝑤 𝑒 𝑥 𝑒 ∑ 𝑤 𝑒∈ ∗∈ \ ∗

𝑥 𝑒  

                    
𝑤 𝐸 𝑤 𝐸∗

𝑥 𝑒
∈ , ∗

                                                     

𝛿 𝐸, 𝐸∗

𝑥 𝑒 .                                              
∈ , ∗

 

So, we only find 𝑥 𝑒 , 𝑒 ∈ Δ 𝐸, 𝐸∗  such that 
𝛿 𝐸, 𝐸∗ ∑ 𝑥 𝑒∈ , ∗ 0 for at least one 𝐸 
with 𝑤 𝐸  𝑤 𝐸∗ . Indeed, if 𝑤 𝐸
𝑤 𝐸∗ 0,     for all 𝐸 ∈ 𝐹. Then, we cannot trans-
form 𝐸∗ into the 𝑘  maximizer, there is nothing to 
discuss.                                                                                           

By this proposition, we consider the object at which 
there exists 𝐸 , 𝑤 𝐸 𝑤 𝐸∗  such that the 
modified weights of them are equal. 

     Let us consider the current objective value 𝑡, then 
𝑤 𝐸 𝑤 𝐸∗  is reduced as much as possible if  

𝑥 𝑒 ≔ 𝑥 𝑒
�̅� 𝑒 ,          if   𝑐 𝑒 �̅� 𝑒 𝑡,

𝑡
𝑐 𝑒

,   otherwise.                    

     Hence, to search for the minimum value 𝑡 s.t. 
𝑤 𝐸 𝑤 𝐸∗ , we apply a binary search 
algorithm. Function 𝑔 𝑡 ≔  𝛿 𝐸, 𝐸∗

∑ 𝑥 𝑒∈ , ∗  is a descending function with 
breakpoints in ℬ: 𝑐 𝑒 �̅� 𝑒 ∈ , ∗

𝑡 , 𝑡 , … , 𝑡 . 

We consider 

𝑥 𝑒 �̅� 𝑒
∈∈ , ∗

𝑡
𝑐 𝑒

∉

, 

where, 𝜌 𝑡 ≔ 𝑒: 𝑐 𝑒 𝑥 𝑒 𝑡 . 

Then, we find the minimum value 𝑡  such that 
∑ 𝑥 𝑒∈ , ∗ 𝛿 𝐸, 𝐸∗  in linear time. 
Therefore, the objective value 𝑡 such that 
∑ 𝑥 𝑒∈ , ∗ 𝛿 𝐸, 𝐸∗  can be found by 

�̅� 𝑒
: ̅   

1
𝑐 𝑒

: ̅

𝑡

𝛿 𝐸, 𝐸∗ . 

Algorithm 1:  Finds the minimum value 𝑡 ∈  ℬ. 

Input: An instance of the problem with 𝑤 𝐸∗

𝑤 𝐸 . 

Find the set ℬ and index its elements, sort it as 
increasing other 𝑡 𝑡 ⋯ 𝑡 . 

Set 𝑎 ≔ 1, 𝑏 ≔ 𝑗. 

while |ℬ| 1 do 
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Set ℎ ≔  , compute 𝑔 𝑡 . 

if 𝑔 𝑡 0 then 

Delete all elements in ℬ which are smaller than 
𝑡  and set 𝑎 ≔ ℎ 1. 

else 

Delete all elements in ℬ which are larger than 𝑡  
and set 𝑏 ≔ ℎ. 

end if 

end while 

Output: The remaining 𝑡  in ℬ such that 
∑ 𝑥 𝑒∈ , ∗ 𝛿 𝐸, 𝐸∗ . 

With two sets 𝐸 , 𝐸 , we can find optimal param-
eters 𝑡 , 𝑡 , respectively. It is clearly to see that if 
𝑡 𝑡  then the optimal objective value of the 
problem is at most 𝑡 ≔  max 𝑡 , 𝑡  as  𝑡 𝛼 then 
𝑤 𝐸∗  𝑤 𝐸  or 𝑤 𝐸∗  𝑤 𝐸 . 

Algorithm 2: Solves the inverse 𝑘  max prob-
lem under Chebyshev norm 

Input: An instance of the problem with 
𝑤 𝐸∗ 𝑤 𝐸 . 

Find all feasible solutions 𝐸, s.t. 𝑤 𝐸
𝑤 𝐸∗ . 

Find all objective value such that 𝑤 𝐸
𝑤 𝐸∗ , denote by 𝐶 𝐸∗, 𝐸 . 

Sort all costs 𝐶 𝐸∗, 𝐸  as increasing order. 

Output: Optimal cost 𝐶 𝐸∗, 𝐸 . 

Clearly, 𝐶 𝐸∗, 𝐸 𝐶 𝐸∗, 𝐸  with 𝑙 𝑘 𝑟, 𝑟 is 
the number of 𝐸 such that 𝑤 𝐸 𝑤 𝐸∗ . In the 
input data, the computation on 𝐹 can be done in lin-
ear time. For example, Δ 𝐸, 𝐸∗  can be computed in 
linear time by just scanning the elements in the two 
sets 𝐸 and 𝐸∗. Furthermore, we can calculate 
𝐶 𝐸, 𝐸  in 𝑂 Δ 𝐸, 𝐸∗  time for 𝑖 1, … , 𝑗. 

Therefore, it costs ∑ 𝑂 Δ 𝐸, 𝐸∗ 𝑂 𝑛  
time to compute all required costs. 

Theorem 3.1. The inverse 𝑘  max combinatorial 
optimization can be solved in 𝑂 𝑛  time, where 𝑛 
is the number of elements in the ground set. 

3.2 Under bottleneck Hamming distance 

For this situation, the objective function can be writ-
ten as follows: 

𝑓 𝑝, 𝑞 max
∈

𝑐 𝑒 𝐻 𝑝 𝑒 , 𝑐 𝑒 𝐻 𝑞 𝑒 , 

where 𝐻 .  is the Hamming distance as 𝐻 𝜃
0, if 𝜃 0
1, if 𝜃 0. 

Similar to the case of Chebyshev norm, the weights 
of elements in 𝐸∗ are augmented and the weights of 
others are reduced. Hence, we simplify the objective 
function as 

𝑓 𝑥 max
∈

𝑐 𝑒 𝐻 𝑥 𝑒 . 

     We also get 𝑤 𝐸 𝑤 𝐸∗ 𝛿 𝐸, 𝐸∗

∑ 𝑥 𝑒∈ , ∗  for 𝑤 𝐸 𝑤 𝐸∗ . 

Same as above, 𝑤 𝐸 𝑤 𝐸∗  is reduced as much 
as possible if 

𝑥 𝑒 : �̅� 𝑒 , if   𝑐 𝑒 𝑡,             
0, otherwise.                   

 

     Consider ℬ: 𝑐 𝑒 ∈ , ∗ . The optimal cost 
obtains one value in ℬ. We can calculate the mini-
mum value in ℬ such that  𝑤 𝐸 𝑤 𝐸∗ 0 in 
linear time by applying binary search algorithm. 
Hence, we also get the following result. 

Theorem 3.2 The inverse 𝑘  max combinatorial 
optimization problem is solvable in quadratic time. 

4 PROBLEM WITH MAX FUNCTION 

4.1 Under Chebyshev norm 

We consider the weight function as 𝑤 𝐸
max

∈
𝑤 𝑒  as the reader is used to the solution ap-

proach of this problem with sum function. It is based 
on the property of the difference 𝑤 𝐸 𝑤 𝐸∗ . 
Hence, for 𝑤 𝐸 𝑤 𝐸∗ , let us investigate 

𝑤 𝐸∗ 𝑤 𝐸
max

∈ ∗
𝑤 𝑒 𝑥 𝑒

max max
∈ ∗∩

𝑤 𝑒

𝑥 𝑒 , max
∈ \ ∗

𝑤 𝑒 𝑥 𝑒 . 

As we find the objective value such that 𝑤 𝐸
𝑤 𝐸∗ . For simplicity, we can denote by 

𝐷 𝐸, 𝐸∗ max
∈ ∗

𝑤 𝑒 𝑥 𝑒

max
\ ∗

𝑤 𝑒 𝑥 𝑒 . 

We get the following proposition. 

Proposition 4.1 The inequality 𝐷 𝐸, 𝐸∗

𝑤 𝐸 𝑤 𝐸∗  is always hold for all 𝑥, and 
𝐷 𝐸, 𝐸∗ 0 iff  𝑤 𝐸 𝑤 𝐸∗ . 
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Proof. Obviously, 𝐷 𝐸, 𝐸∗ 𝑤 𝐸 𝑤 𝐸∗  is 
always hold. If 𝐷 𝐸, 𝐸∗ 0 then max

∈ ∗
𝑤 𝑒

𝑥 𝑒 max
\ ∗

𝑤 𝑒 𝑥 𝑒 . Because max
∈ ∗

𝑤 𝑒

𝑥 𝑒 max
∩ ∗

𝑤 𝑒 𝑥 𝑒 , we get 𝑤 𝐸∗

𝑤 𝐸 0. Other way, if 𝑤 𝐸 𝑤 𝐸∗ 0, 
for the least cost, we can find 𝑥 𝑒 ∈ \ ∗ such that 
max

∈ ∗
𝑤 𝑒 𝑥 𝑒 max

\ ∗
𝑤 𝑒 𝑥 𝑒 . Finally, 

we get the result 𝐷 𝐸, 𝐸∗ 0.                                   

By this proposition, we can consider 𝐷 𝐸, 𝐸∗  in-
stead of 𝑤 𝐸 𝑤 𝐸∗ . Let ℬ:
𝑐 𝑒 �̅� 𝑒 ∈ , ∗ . We sort all elements in ℬ to get 

ℬ 𝑡 , … , 𝑡  with 𝑡 𝑡 ⋯ 𝑡 . We apply a 
binary search algorithm to find minimum value 
𝑡 𝑖 1   such that 𝐷 𝐸, 𝐸∗ 0 with respect to 
cost 𝑡 . It can be done similarly to Algorithm 1.  
Hence, we further consider the function 𝐷 𝐸, 𝐸∗  
for 𝑡 ∈ 𝑡 ; 𝑡 , i.e.,  

𝐷 𝐸, 𝐸∗ max
: ̅   

𝑤 𝑒
𝑡

𝑐 𝑒

max
: ̅   

𝑤 𝑒
𝑡

𝑐 𝑒
. 

Where at 𝑡 𝑡 , 𝐷 𝐸, 𝐸∗ 0, 𝐷 𝐸, 𝐸∗ 0 is 
obtained at 

𝑡∗

argmin max max
∈ ∗: ̅   

𝑤 𝑒

𝑡
𝑐 𝑒

, max
∈ \ ∗: ̅   

𝑤 𝑒
𝑡

𝑐 𝑒
. 

Hence 𝑡∗ can be found in linear time by the algo-
rithm of Gassner (2009). 

Theorem 4.1 The inverse 𝑘  max combinatorial 
optimization problem with max function can be 
solved in 𝑂 𝑛 𝑙𝑜𝑔 𝑛  time. 

4.2 Problem under bottle-neck Hamming 
distance 

We also consider the gap function 

𝐷 𝐸, 𝐸∗ max
∈ ∗

𝑤 𝑒 𝑥 𝑒

max
∈ \ ∗

𝑤 𝑒 𝑥 𝑒 . 

Let ℬ: 𝑡 , … , 𝑡  with 𝑡 𝑡 ⋯ 𝑡  as 
above. Then, we apply a binary search algorithm to 
find the minimum value such that 𝐷 𝐸, 𝐸∗ 0. 
The corresponding cost is 𝐶 𝐸 . 

Theorem 4.2 The inverse 𝑘  max combinatorial 
optimization problem with max function under bot-
tle-neck Hamming distance can be solved in 
𝑂 𝑛 𝑙𝑜𝑔 𝑛  time. 

5 CONCLUSION 

We addressed the inverse 𝑘  maximization prob-
lem with the sum and max function under Cheby-
shev norm and bottleneck Hamming distance. Based 
on a binary search algorithm, we developed algo-
rithms that solved the underlying problem in quad-
ratic time with sum function, and 𝑂 𝑛 log 𝑛  with 
the other one. For future research, we will consider 
the inverse 𝑘  maximization under various objec-
tive function, e.g., rectilinear norm or weighted sum 
Hamming distance. 
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