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A ground set of n elements and a class of its subsets, also known as fea-
sible solutions, is given.  Moreover, each element in the ground set is 
associated a positive weight. In the setting of the original combinatorial 
optimization problem, each feasible solution corresponds to an objective 
value, often measured under the sum or the max of all element weights 
in the underlying solution. This paper is to address the problem of mod-
ifying the weight of elements in the ground set such that a prespecified 
subset becomes the 𝑘௧௛ maximizer with respect to new weights and the 
cost is minimized. This problem is called the inverse version of the 𝑘௧௛ 
maximization combinatorial optimization. Two quadratic algorithms 
were developed to solve this problem with sum objective function under 
Chebyshev norm and the bottleneck Hamming distance. Additionally, if 
the objective function is the max function then this problem can be solved 
in 𝑂ሺ𝑛ଶ 𝑙𝑜𝑔 𝑛ሻ time. 
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1 INTRODUCTION 

In a combinatorial optimization problem, one often 
supposes that the parameters such as costs, 
capacities, profits, etc. are already known and aims 
to find an optimal solution. However, in many real-
life situations, the estimation or approximation for 
the parameters are known and it is difficult to find 
the exact optimizer. The fundamental idea of inverse 
(combinatorial) optimization problem (Heuberger, 
2004) is to change the parameters of the 
corresponding original problem such that a 
predetermined solution becomes optimal with 

respect to new parameters and the cost function is 
minimized. 

The inverse optimization problem was first 
investigated by Burton et al. (1992). They studied 
the inverse shortest path problem arising in seismic 
tomography and gave an application to forecast the 
movement of earthquakes. Since then, lots of useful 
applications in the reality of the inverse 
optimization problem have been proposed by many 
researchers. In 1995, the relation between the 
inverse shortest path and minimal cutset problem 
was proved by Xu et al. (1995). Then, Zhang et al. 
(1996) recommended strongly polynomial time 
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algorithms to solve the inverse version of 
assignment and minimum cost flow problems. Two 
years later, Zhang et al. (1998) demonstrated that 
the inverse problem of minimum cuts can be 
transformed in a direct way into a minimum cost 
circulation problem, and therefore, can be solved 
successfully by strongly polynomial algorithms. In 
the same year, Hu et al. (1998) also designed an 
𝑂ሺ𝑛ଷሻ algorithm to solve the inverse shortest path 
arborescence problem under 𝑙ଵ norm. Recently, 
Nguyen et al. (2015) explored the inverse convex 
ordered 1-median problem on trees with the cost 
function considered under Chebyshev norm and the 
bottleneck Hamming distance. They established an 
𝑂ሺ𝑛ଶ log 𝑛ሻ time algorithm to solve this problem.  

In many practical situations, the kth maximizer of a 
problem is focused. For example, as the price of 
transportations, services and travel agencies in the 
first classes are expensive or unreasonable, one had 
better to choose the ones in choosing the kth-class. 
Therefore, it is necessary to justify parameters of a 
model so that the desired solution becomes the kth 
best one. In this paper, the inverse kth maximization 
problem under Chebyshev norm and bottleneck 
Hamming distance are studied. According to the 
best of our knowledge, the problem has not been 
under investigation so far. The objective function of 
the original problem is considered in two forms, 
viz., sum and max. For the sum function, the 
problem can be solved in quadratic time. 
Concerning the max function, an 𝑂ሺ𝑛ଶ log 𝑛ሻ 
algorithm is developed to solve the corresponding 
inverse problem. 

This paper is organized as follows. Section 2 briefly 
recalls the combinatorial optimization and its 
inverse version. Two quadratic algorithms that solve 
the inverse 𝑘௧௛ maximization problem are 
developed in Section 3. Finally, in Section 4, inverse 
𝑘௧௛ maximization optimization problem with max 
function is coined. It shows that the problem is 
solvable in 𝑂ሺ𝑛ଶ log 𝑛ሻ time. 

2 PROBLEM DEFINITION 

Given a ground set 𝐺 ≔ ሼ𝑒ଵ; 𝑒ଶ; … ; 𝑒௡ሽ and let 𝐹 be 
a class of subsets of 𝐺, i.e., 𝐹 ≔ ൛𝐸ଵ; 𝐸ଶ; … ; 𝐸௣ൟ, 
where 𝐸௜ ⊂ 𝐺, for 𝑖 ൌ 1, … , 𝑝. The set 𝐹 is often 
considered as the set of all feasible solutions for a 
corresponding combinatorial optimization problem 
on 𝐺. Moreover, each element 𝑒௝ is associated with 
a non-negative weight, say 𝑤൫𝑒௝൯, for 𝑗 ൌ 1, … , 𝑛. 
The weight of 𝐸 can be either measured by the sum 
of all elements in 𝐸, i.e., 

𝑤௦ሺ𝐸ሻ ≔ ෍ 𝑤ሺ𝑒ሻ
௘∈ா

, 

or by the max of its members, i.e.,  

𝑤௠ሺ𝐸ሻ ≔ max௘∈ா𝑤ሺ𝑒ሻ. 

A solution 𝐸 ∈ 𝐹 is the 𝑘௧௛ maximizer of the 
combinatorial optimization problem with respect to 
sum (max) function on 𝐹 iff 𝑤௦ሺ𝐸ሻ ൌ

𝑤௦൫𝐸ሺ௞ሻ൯ ቀ𝑤௠ሺ𝐸ሻ ൌ 𝑤௠൫𝐸ሺ௞ሻ൯ቁ in the sorting 

𝑤௦൫𝐸ሺଵሻ൯ ൑ 𝑤௦൫𝐸ሺଶሻ൯ ൑ 𝑤௦൫𝐸ሺଷሻ൯ ൑ ⋯ ൑ 𝑤௦൫𝐸ሺ௞ሻ൯
൑ ⋯ ൑ 𝑤௦൫𝐸ሺ௣ሻ൯ 

or  
𝑤௠൫𝐸ሺଵሻ൯ ൑ 𝑤௠൫𝐸ሺଶሻ൯ ൑ 𝑤௠൫𝐸ሺଷሻ൯ ൑ ⋯

൑ 𝑤௠൫𝐸ሺ௞ሻ൯ ൑ ⋯ ൑ 𝑤௠൫𝐸ሺ௣ሻ൯. 

Here, ሺ. ሻ is a permutation on the set of ሼ1,2, … , 𝑝ሽ. 

Example 2.1 

Given a network in Fig. 1., the solution sets 𝐹 ൌ
ሼ𝐸ଵ; 𝐸ଶ; 𝐸ଷ; 𝐸ସ; 𝐸ହ; 𝐸଺ሽ can be considered as the set 
of all paths connecting two leaves of the tree. Then 
the subsets in 𝐹  is represented as follows: 

𝐸ଵ ൌ ሼ𝑒ଵ; 𝑒ଷ; 𝑒ସሽ, 𝐸ଶ ൌ ሼ𝑒ଶ; 𝑒ଷ; 𝑒ସሽ, 𝐸ଷ
ൌ ሼ𝑒ଵ; 𝑒ଷ; 𝑒ହሽ, 𝐸ସ
ൌ ሼ𝑒ଶ; 𝑒ଷ; 𝑒ହሽ, 𝐸ହ ൌ ሼ𝑒ଵ; 𝑒ଶሽ, 𝐸଺
ൌ ሼ𝑒ସ; 𝑒ହሽ. 

𝑤௦ሺ𝐸ଵሻ ൌ 11; 𝑤௦ሺ𝐸ଶሻ ൌ 12; 𝑤௦ሺ𝐸ଷሻ ൌ
13; 𝑤௦ሺ𝐸ସሻ ൌ 14; 𝑤௦ሺ𝐸ହሻ ൌ 5; 𝑤௦ሺ𝐸଺ሻ ൌ 10. 

𝑤௠ሺ𝐸ଵሻ ൌ 5; 𝑤௠ሺ𝐸ଶሻ ൌ 5; 𝑤௠ሺ𝐸ଷሻ ൌ
6; 𝑤௠ሺ𝐸ସሻ ൌ 6; 𝑤௠ሺ𝐸ହሻ ൌ 3; 𝑤௠ሺ𝐸଺ሻ ൌ 6. 

Choose 𝑘 ൌ 4, then 𝐸ଶ is the 4௧௛ maximizer with 
respect to sum function. Correspondingly, 𝐸ଷ (or 
𝐸ହ, 𝐸଺) is the 4௧௛ maximizer with respect to max 
function. 

 

Fig. 1: An instance of a network 

Given a set of feasible solutions 𝐹, a weight function 
𝑤ሺ. ሻ and a prespecified set 𝐸∗ ∈ 𝐹. The weight of 
each element is modified by augmenting or 
reducing, i.e., 𝑤෥ሺ𝑒ሻ ൌ 𝑤ሺ𝑒ሻ ൅ 𝑝ሺ𝑒ሻ െ 𝑞ሺ𝑒ሻ. The 
inverse 𝑘௧௛ maximization is stated as follows: 
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𝐸∗ become the 𝑘௧௛ maximization (corresponding 
sum or max function) with respect to new weights 
𝑤෥ . 

Cost function 𝑓ሺ𝑝, 𝑞ሻ is minimized. 

Variables are in certain bounds, i.e., 0 ൑ 𝑝ሺ𝑒ሻ ൑
𝑝̅ሺ𝑒ሻ and 0 ൑ 𝑞ሺ𝑒ሻ ൑ 𝑞തሺ𝑒ሻ for 𝑒 ∈ 𝐺. 

3 PROBLEM WITH SUM FUNCTION 

3.1 Under Chebyshev norm 

The cost function can be written as 𝑓ሺ𝑝, 𝑞ሻ ൌ
maxሼ𝑐ାሺ𝑒ሻ𝑝ሺ𝑒ሻ, 𝑐ିሺ𝑒ሻ𝑞ሺ𝑒ሻሽ, where 𝑐ାሺ𝑒ሻሺ𝑐ିሺ𝑒ሻሻ 
is the cost to increase (decrease) one unit weight of 
an edge 𝑒 ∈ 𝐺. Assume that 𝑤௦ሺ𝐸∗ሻ ൏ 𝑤௦൫𝐸ሺ௞ሻ൯, 
then 𝐸∗ is not a 𝑘௧௛-max of the problem. 

Proposition 3.1 In the optimal solution of the 
inverse 𝑘௧௛ max optimization problem, one 
increases the weights of elements in 𝐸∗ and reduces 
the weights of elements in 𝐺\𝐸∗. 

By this proposition, we set 𝑞ሺ𝑒ሻ ൌ 0, ∀𝑒 ∈ 𝐸∗, and 
𝑝ሺ𝑒ሻ ൌ 0, ∀𝑒 ∈ 𝐺\𝐸∗. Hence, we set 

𝑥ሺ𝑒ሻ ൌ ൜
𝑝ሺ𝑒ሻ, if 𝑒 ∈ 𝐸∗     

𝑞ሺ𝑒ሻ,   if 𝑒 ∈ 𝐺\𝐸∗    and   𝑥̅ሺ𝑒ሻ ൌ

൜
𝑝̅ሺ𝑒ሻ,   if 𝑒 ∈ 𝐸∗      
𝑞തሺ𝑒ሻ,   if 𝑒 ∈ 𝐺\𝐸∗.

 

     The weight of 𝑒 ∈ 𝐸∗ ሺ𝑒 ∈ 𝐺\𝐸∗ሻ is said to be 
modified by an amount 𝑥ሺ𝑒ሻ if it is augmented 
(reduced) by 𝑥ሺ𝑒ሻ. The cost is consequently written 
as 

𝑓ሺ𝑝, 𝑞ሻ ൌ max
௘∈ா

ሼ𝑐ሺ𝑒ሻ𝑥ሺ𝑒ሻሽ. 

Here, 𝑐ሺ𝑒ሻ ≔ 𝑐ାሺ𝑒ሻ if 𝑒 ∈ 𝐸∗ and 𝑐ሺ𝑒ሻ ≔ 𝑐ିሺ𝑒ሻ 
otherwise. 

The following denotation is further introduced: 

Δሺ𝐸, 𝐸ᇱሻ ൌ ሺ𝐸\𝐸ᇱሻ ∪ ሺ𝐸ᇱ\𝐸ሻ; 𝛿ሺ𝐸, 𝐸ᇱሻ
ൌ 𝑤௦ሺ𝐸ሻ െ 𝑤௦ሺ𝐸ᇱሻ. 

Proposition 3.2 In the optimal solution of the 
problem, there exists at least one solution set 𝐸 ∈
𝐹, 𝑤௦ሺ𝐸ሻ ൐ 𝑤௦ሺ𝐸∗ሻ, such that 𝑤෥௦ሺ𝐸ሻ ൌ 𝑤෥௦ሺ𝐸∗ሻ. 

Proof. For 𝐸 ∈ 𝐹, 𝑤௦ሺ𝐸ሻ ൐ 𝑤௦ሺ𝐸∗ሻ. Let us 
consider 𝑤෦௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ ൌ ∑ ሺ𝑤ሺ𝑒ሻ ൅௘∈ா∩ா∗

𝑥ሺ𝑒ሻሻ ൅ ∑ ሺ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሻ െ ∑ ሺ𝑤ሺ𝑒ሻ ൅௘∈ா∗௘∈ா\ா∗

𝑥ሺ𝑒ሻሻ 

                    
ൌ 𝑤௦ሺ𝐸ሻ െ 𝑤௦ሺ𝐸∗ሻ

െ ෍ 𝑥ሺ𝑒ሻ
௘∈୼ሺா,ா∗ሻ

                                                     

ൌ 𝛿ሺ𝐸, 𝐸∗ሻ

െ ෍ 𝑥ሺ𝑒ሻ.                                              
௘∈୼ሺா,ா∗ሻ

 

So, we only find 𝑥ሺ𝑒ሻ, 𝑒 ∈ Δሺ𝐸, 𝐸∗ሻ such that 
𝛿ሺ𝐸, 𝐸∗ሻ െ ∑ 𝑥ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ ൌ 0 for at least one 𝐸 
with 𝑤௦ሺ𝐸ሻ ൐  𝑤௦ሺ𝐸∗ሻ. Indeed, if 𝑤෥௦ሺ𝐸ሻ െ
𝑤෥௦ሺ𝐸∗ሻ ൐ 0,     for all 𝐸 ∈ 𝐹. Then, we cannot trans-
form 𝐸∗ into the 𝑘௧௛ maximizer, there is nothing to 
discuss.                                                                                           

By this proposition, we consider the object at which 
there exists 𝐸ሺ௜ሻ, 𝑤௦൫𝐸ሺ௜ሻ൯ ൐ 𝑤௦ሺ𝐸∗ሻ such that the 
modified weights of them are equal. 

     Let us consider the current objective value 𝑡, then 
𝑤෥௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ is reduced as much as possible if  

𝑥ሺ𝑒ሻ ≔ 𝑥௧ሺ𝑒ሻ ൌ ቐ
𝑥̅ሺ𝑒ሻ,          if   𝑐ሺ𝑒ሻ𝑥̅ሺ𝑒ሻ ൑ 𝑡,

𝑡
𝑐ሺ𝑒ሻ

,   otherwise.                    

     Hence, to search for the minimum value 𝑡 s.t. 
𝑤෥௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ, we apply a binary search 
algorithm. Function 𝑔ሺ𝑡ሻ ≔  𝛿ሺ𝐸, 𝐸∗ሻ െ
∑ 𝑥௧ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ  is a descending function with 
breakpoints in ℬ: ൌ ሼ𝑐ሺ𝑒ሻ𝑥̅ሺ𝑒ሻሽ௘∈୼ሺா,ா∗ሻ ൌ
൛𝑡ଵ, 𝑡ଶ, … , 𝑡௝ൟ. 

We consider 

෍ 𝑥௧ሺ𝑒ሻ ൌ ෍ 𝑥̅ሺ𝑒ሻ
௘∈ఘሺ௧ሻ௘∈୼ሺா,ா∗ሻ

൅ ෍
𝑡

𝑐ሺ𝑒ሻ
௘∉ఘሺ௧ሻ

, 

where, 𝜌ሺ𝑡ሻ ≔ ሼ𝑒: 𝑐ሺ𝑒ሻ𝑥ሺ𝑒ሻ ൑ 𝑡ሽ. 

Then, we find the minimum value 𝑡௜బ such that 
∑ 𝑥௧೔బ ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ ൒ 𝛿ሺ𝐸, 𝐸∗ሻ in linear time. 
Therefore, the objective value 𝑡 such that 
∑ 𝑥௧ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ ൌ 𝛿ሺ𝐸, 𝐸∗ሻ can be found by 

෍ 𝑥̅ሺ𝑒ሻ
௘:௖ሺ௘ሻ௫̅ሺ௘ሻ ஸ ௧೔బషభ

൅ ቌ ෍
1

𝑐ሺ𝑒ሻ
௘:௖ሺ௘ሻ௫̅ሺ௘ሻவ௧೔బషభ

ቍ 𝑡

ൌ 𝛿ሺ𝐸, 𝐸∗ሻ. 

Algorithm 1:  Finds the minimum value 𝑡௜బ ∈  ℬ. 

Input: An instance of the problem with 𝑤௦ሺ𝐸∗ሻ ൏
𝑤௦ሺ𝐸ሻ. 

Find the set ℬ and index its elements, sort it as 
increasing other 𝑡ଵ ൑ 𝑡ଶ ൑ ⋯ ൑ 𝑡௝. 

Set 𝑎 ≔ 1, 𝑏 ≔ 𝑗. 

while |ℬ| ൐ 1 do 
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Set ℎ ≔  ቔ
௔ା௕

ଶ
ቕ, compute 𝑔ሺ𝑡௛ሻ. 

if 𝑔ሺ𝑡௛ሻ ൐ 0 then 

Delete all elements in ℬ which are smaller than 
𝑡௛ and set 𝑎 ≔ ℎ ൅ 1. 

else 

Delete all elements in ℬ which are larger than 𝑡௛ 
and set 𝑏 ≔ ℎ. 

end if 

end while 

Output: The remaining 𝑡௜బ in ℬ such that 
∑ 𝑥௧೔బ ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ ൒ 𝛿ሺ𝐸, 𝐸∗ሻ. 

With two sets 𝐸௜, 𝐸௝, we can find optimal param-
eters 𝑡௜, 𝑡௝, respectively. It is clearly to see that if 
𝑡௜ ൑ 𝑡௝ then the optimal objective value of the 
problem is at most 𝑡 ≔  max൛𝑡௜, 𝑡௝ൟ as  𝑡 ൏ 𝛼 then 
𝑤෥௦ሺ𝐸∗ሻ ൏  𝑤෥௦ሺ𝐸௜ሻ or 𝑤෥௦ሺ𝐸∗ሻ ൏  𝑤෥௦ሺ𝐸௝ሻ. 

Algorithm 2: Solves the inverse 𝑘௧௛ max prob-
lem under Chebyshev norm 

Input: An instance of the problem with 
𝑤௦ሺ𝐸∗ሻ ൏ 𝑤௦൫𝐸ሺ௞ሻ൯. 

Find all feasible solutions 𝐸, s.t. 𝑤௦ሺ𝐸ሻ ൐
𝑤௦ሺ𝐸∗ሻ. 

Find all objective value such that 𝑤෥௦ሺ𝐸ሻ ൌ
𝑤෥௦ሺ𝐸∗ሻ, denote by 𝐶ሺ𝐸∗, 𝐸ሻ. 

Sort all costs ሼ𝐶ሺ𝐸∗, 𝐸ሻሽ as increasing order. 

Output: Optimal cost 𝐶ሺ𝐸∗, 𝐸ሻ. 

Clearly, 𝐶ሺ𝐸∗, 𝐸ሻ ൌ 𝐶൫𝐸∗, 𝐸ሺ௟ሻ൯ with 𝑙 ൌ 𝑘 െ 𝑟, 𝑟 is 
the number of 𝐸 such that 𝑤௦ሺ𝐸ሻ ൏ 𝑤௦ሺ𝐸∗ሻ. In the 
input data, the computation on 𝐹 can be done in lin-
ear time. For example, Δሺ𝐸, 𝐸∗ሻ can be computed in 
linear time by just scanning the elements in the two 
sets 𝐸 and 𝐸∗. Furthermore, we can calculate 
𝐶൫𝐸, 𝐸ሺ௜ሻ൯ in 𝑂൫หΔ൫𝐸, 𝐸ሺ௜ሻ

∗ ൯ห൯ time for 𝑖 ൌ 1, … , 𝑗. 

Therefore, it costs ∑ 𝑂൫หΔ൫𝐸, 𝐸ሺ௜ሻ
∗ ൯ห൯ ൌ 𝑂ሺ𝑛ଶሻ௝

௜ୀଵ  
time to compute all required costs. 

Theorem 3.1. The inverse 𝑘௧௛ max combinatorial 
optimization can be solved in 𝑂ሺ𝑛ଶሻ time, where 𝑛 
is the number of elements in the ground set. 

3.2 Under bottleneck Hamming distance 

For this situation, the objective function can be writ-
ten as follows: 

𝑓ሺ𝑝, 𝑞ሻ ൌ max
௘∈ா

൛𝑐ାሺ𝑒ሻ𝐻൫𝑝ሺ𝑒ሻ൯, 𝑐ିሺ𝑒ሻ𝐻ሺ𝑞ሺ𝑒ሻሻൟ, 

where 𝐻ሺ. ሻ is the Hamming distance as 𝐻ሺ𝜃ሻ ൌ

൜
0, if 𝜃 ൌ 0
1, if 𝜃 ് 0. 

Similar to the case of Chebyshev norm, the weights 
of elements in 𝐸∗ are augmented and the weights of 
others are reduced. Hence, we simplify the objective 
function as 

𝑓ሺ𝑥ሻ ൌ max
௘∈ா

ሼ𝑐ሺ𝑒ሻ𝐻ሺ𝑥ሺ𝑒ሻሻሽ. 

     We also get 𝑤෥௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ ൌ 𝛿ሺ𝐸, 𝐸∗ሻ െ
∑ 𝑥ሺ𝑒ሻ௘∈୼ሺா,ா∗ሻ  for 𝑤௦ሺ𝐸ሻ ൐ 𝑤௦ሺ𝐸∗ሻ. 

Same as above, 𝑤෥௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ is reduced as much 
as possible if 

𝑥ሺ𝑒ሻ: ൌ ൜𝑥̅ሺ𝑒ሻ, if   𝑐ሺ𝑒ሻ ൑ 𝑡,             
0, otherwise.                   

 

     Consider ℬ: ൌ ሼ𝑐ሺ𝑒ሻሽ௘∈୼ሺா,ா∗ሻ. The optimal cost 
obtains one value in ℬ. We can calculate the mini-
mum value in ℬ such that  𝑤෥௦ሺ𝐸ሻ െ 𝑤෥௦ሺ𝐸∗ሻ ൌ 0 in 
linear time by applying binary search algorithm. 
Hence, we also get the following result. 

Theorem 3.2 The inverse 𝑘௧௛ max combinatorial 
optimization problem is solvable in quadratic time. 

4 PROBLEM WITH MAX FUNCTION 

4.1 Under Chebyshev norm 

We consider the weight function as 𝑤௠ሺ𝐸ሻ ൌ
max
௘∈ா

ሼ𝑤ሺ𝑒ሻሽ as the reader is used to the solution ap-

proach of this problem with sum function. It is based 
on the property of the difference 𝑤௦ሺ𝐸ሻ െ 𝑤௦ሺ𝐸∗ሻ. 
Hence, for 𝑤௠ሺ𝐸ሻ ൐ 𝑤௠ሺ𝐸∗ሻ, let us investigate 

𝑤෥௠ሺ𝐸∗ሻ െ 𝑤෥௠ሺ𝐸ሻ
ൌ max

௘∈ா∗
ሼ𝑤ሺ𝑒ሻ ൅ 𝑥ሺ𝑒ሻሽ

െ max ൜ max
௘∈ா∗∩ா

ሼ𝑤ሺ𝑒ሻ

൅ 𝑥ሺ𝑒ሻሽ , max
௘∈ா\ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽൠ . 

As we find the objective value such that 𝑤෥௠ሺ𝐸ሻ ൌ
𝑤෥௠ሺ𝐸∗ሻ. For simplicity, we can denote by 

𝐷ሺ𝐸, 𝐸∗ሻ ൌ max
௘∈ா∗

ሼ𝑤ሺ𝑒ሻ ൅ 𝑥ሺ𝑒ሻሽ

െ max
ா\ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽ. 

We get the following proposition. 

Proposition 4.1 The inequality 𝐷ሺ𝐸, 𝐸∗ሻ ൒
𝑤෥௠ሺ𝐸ሻ െ 𝑤෥௠ሺ𝐸∗ሻ is always hold for all 𝑥, and 
𝐷ሺ𝐸, 𝐸∗ሻ ൌ 0 iff  𝑤෥௠ሺ𝐸ሻ ൌ 𝑤෥௠ሺ𝐸∗ሻ. 
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Proof. Obviously, 𝐷ሺ𝐸, 𝐸∗ሻ ൒ 𝑤෥௠ሺ𝐸ሻ െ 𝑤෥௠ሺ𝐸∗ሻ is 
always hold. If 𝐷ሺ𝐸, 𝐸∗ሻ ൌ 0 then max

௘∈ா∗
ሼ𝑤ሺ𝑒ሻ ൅

𝑥ሺ𝑒ሻሽ ൌ max
ா\ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽ. Because max
௘∈ா∗

ሼ𝑤ሺ𝑒ሻ ൅

𝑥ሺ𝑒ሻሽ ൒ max
ா∩ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽ, we get 𝑤෥௠ሺ𝐸∗ሻ െ

𝑤෥௠ሺ𝐸ሻ ൌ 0. Other way, if 𝑤෥௠ሺ𝐸ሻ െ 𝑤෥௠ሺ𝐸∗ሻ ൌ 0, 
for the least cost, we can find ሼ𝑥ሺ𝑒ሻሽ௘∈ா\ா∗ such that 
max
௘∈ா∗

ሼ𝑤ሺ𝑒ሻ ൅ 𝑥ሺ𝑒ሻሽ ൌ max
ா\ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽ. Finally, 

we get the result 𝐷ሺ𝐸, 𝐸∗ሻ ൌ 0.                                   

By this proposition, we can consider 𝐷ሺ𝐸, 𝐸∗ሻ in-
stead of 𝑤෥௠ሺ𝐸ሻ െ 𝑤෥௠ሺ𝐸∗ሻ. Let ℬ: ൌ
ሼ𝑐ሺ𝑒ሻ𝑥̅ሺ𝑒ሻሽ௘∈୼ሺா,ா∗ሻ. We sort all elements in ℬ to get 

ℬ ൌ ൛𝑡ଵ, … , 𝑡௝ൟ with 𝑡ଵ ൑ 𝑡ଶ ൑ ⋯ ൑ 𝑡௝. We apply a 
binary search algorithm to find minimum value 
𝑡௜బሺ𝑖଴ ൐ 1ሻ  such that 𝐷ሺ𝐸, 𝐸∗ሻ ൐ 0 with respect to 
cost 𝑡௜బ. It can be done similarly to Algorithm 1.  
Hence, we further consider the function 𝐷ሺ𝐸, 𝐸∗ሻ 
for 𝑡 ∈ ൣ𝑡௜బିଵ; 𝑡௜బ൧, i.e.,  

𝐷ሺ𝐸, 𝐸∗ሻ ൌ max
௘:௖ሺ௘ሻ௫̅ሺ௘ሻ வ ௧೔బషభ

൜𝑤ሺ𝑒ሻ ൅
𝑡

𝑐ሺ𝑒ሻ
ൠ

െ max
௘:௖ሺ௘ሻ௫̅ሺ௘ሻ வ ௧೔బషభ

൜𝑤ሺ𝑒ሻ െ
𝑡

𝑐ሺ𝑒ሻ
ൠ . 

Where at 𝑡 ൌ 𝑡௜బିଵ, 𝐷ሺ𝐸, 𝐸∗ሻ ൏ 0, 𝐷ሺ𝐸, 𝐸∗ሻ ൌ 0 is 
obtained at 

𝑡∗

ൌ argmin max ቊ max
௘∈ா∗:௖ሺ௘ሻ௫̅ሺ௘ሻ வ ௧೔బషభ

൜𝑤ሺ𝑒ሻ

൅
𝑡

𝑐ሺ𝑒ሻ
ൠ , max

௘∈ா\ா∗:௖ሺ௘ሻ௫̅ሺ௘ሻ வ ௧೔బషభ
൜𝑤ሺ𝑒ሻ െ

𝑡
𝑐ሺ𝑒ሻ

ൠቋ . 

Hence 𝑡∗ can be found in linear time by the algo-
rithm of Gassner (2009). 

Theorem 4.1 The inverse 𝑘௧௛ max combinatorial 
optimization problem with max function can be 
solved in 𝑂ሺ𝑛ଶ 𝑙𝑜𝑔 𝑛ሻ time. 

4.2 Problem under bottle-neck Hamming 
distance 

We also consider the gap function 

𝐷ሺ𝐸, 𝐸∗ሻ ൌ max
௘∈ா∗

ሼ𝑤ሺ𝑒ሻ ൅ 𝑥ሺ𝑒ሻሽ

െ max
௘∈ா\ா∗

ሼ𝑤ሺ𝑒ሻ െ 𝑥ሺ𝑒ሻሽ. 

Let ℬ: ൌ ൛𝑡ଵ, … , 𝑡௝ൟ with 𝑡ଵ ൑ 𝑡ଶ ൑ ⋯ ൑ 𝑡௝ as 
above. Then, we apply a binary search algorithm to 
find the minimum value such that 𝐷ሺ𝐸, 𝐸∗ሻ ൒ 0. 
The corresponding cost is 𝐶ሺ𝐸ሻ. 

Theorem 4.2 The inverse 𝑘௧௛ max combinatorial 
optimization problem with max function under bot-
tle-neck Hamming distance can be solved in 
𝑂ሺ𝑛ଶ 𝑙𝑜𝑔 𝑛ሻ time. 

5 CONCLUSION 

We addressed the inverse 𝑘௧௛ maximization prob-
lem with the sum and max function under Cheby-
shev norm and bottleneck Hamming distance. Based 
on a binary search algorithm, we developed algo-
rithms that solved the underlying problem in quad-
ratic time with sum function, and 𝑂ሺ𝑛ଶ log 𝑛ሻ with 
the other one. For future research, we will consider 
the inverse 𝑘௧௛ maximization under various objec-
tive function, e.g., rectilinear norm or weighted sum 
Hamming distance. 
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